Task Analysis- Quality Control

Topic: Quality Control

- 1. Define
 - a. Quality control (QC)
 - b. Quality assurance (QA)
 - c. Accuracy
 - d. Precision
 - e. Reliability
 - f. Acceptable range / Confidence interval / Confidence limits
 - g. Gaussian distribution
 - h. Standard deviation (SD)
 - i. Coefficient of variation (CV)
 - j. Built-in (internal) control (BIT)
 - k. Lot number
 - I. Calibrators/Standards
 - m. Parallel testing
 - n. Target value
 - o. Outlier
 - p. Shift
 - q. Trend
 - r. 2₂₅
 - s. Random analytical error (RAE)
 - t. Systematic analytical error (SAE)
- 2. Organizations that determine quality standards
- 3. Purpose of performing QC
 - a. Analytic process
 - b. Instrument performance
 - c. Reagent/media performance/stability
 - d. Calibration verification
- 4. Types of controls
 - a. Qualitative
 - b. Quantitative
 - c. Internal
 - d. External
 - e. Instrument performance
 - f. Prepared in-house
 - g. Commercially prepped
 - h. Selecting appropriate control for type of sample being analyzed
- 5. Differentiate calibrators/standards from controls
 - a. Application of each
- 6. QC rules
 - a. Westgard's rules
 - b. Multirule

- c. Policies may vary between laboratories
- 7. Statistics
 - a. Mean
 - b. Median
 - c. Mode
 - d. Standard deviation
 - e. Coefficient of variation
 - f. Normal distribution (Gaussian curve)
 - g. Confidence intervals
 - i. +/- 1 SD = 68.2% of data
 - ii. +/- 2 SD = 95.5% of data
 - iii. +/- 3 SD = 99.7% of data
- 8. Documenting QC
 - a. Levey-Jennings chart
 - b. Establishing acceptable ranges
 - c. Who documents QC
 - d. What QC needs to be documented
 - e. When does QC need to be documented
 - f. Why is documentation important
- 9. Evaluating QC results
 - a. Using Levey-Jennings chart
 - i. Determine values that fall outside acceptable limits when applying Westgard's rules (e.g., shifts, trends, outliers, 2-2 SD)
 - ii. Presence of random or systematic analytical error
 - iii. Possible cause of error and the corrective action needed
 - b. Control limits/acceptable values
 - i. Within 2 SD
 - c. Identify outliers or failures
- 10. Troubleshooting QC results
 - a. Corrective action
 - b. Standards, reagents, or controls
 - c. Instrument maintenance or repairs
 - d. Basic troubleshooting steps
 - i. Test procedure, technique, calculations, or transcription
 - ii. Instrument performance
 - iii. Reagent(s)
 - iv. Calibration
 - v. Control(s)
 - vi. Using flow charts for troubleshooting QC failures
 - e. Manual vs. Automated tests
 - f. Qualitative vs. Quantitative assays
 - g. Batch vs. Random-access assays
 - h. One level vs. Two levels vs. Three levels of controls
 - i. Third party controls

- 11. Quality control policies may vary between different laboratory departments and institutions
- 12. Parallel testing
 - a. Run new lot in parallel with old lot (acts as control) to verify/validate new control
- 13. Lot-to-lot reagent confirmation
- 14. Monitor the performance (e.g., speed, timing, temperature, cleanliness) of basic laboratory equipment and supplies