Interval Class Vectors

Name			
1 tuille.	 	 	-

PART 1: Calculating IC Vectors for Pitch Class Sets

• For each pitch class set given in normal order below, provide the interval class vector.

	Pitch class set (normal order)	Interval Class Vector
1.	[3, 4, 7, 9]	
2.	[0, 2, 6, 8]	
3.	[4, 5, 7, 8, 10]	
4.	[6, 8, 9, 10, 0, 1]	

PART 2: Calculating IC Vectors for Unordered PC Sets

Each collection below is an unordered pitch class set.

- First, put each set in normal order.
- Then, provide the interval class vector for each.

Unordered Set		Normal order	Interval Class Vector	
1.	5168			
2.	e 0 5 4 2			
3.	t 6 7 5			
4.	065748			

Continued on next page

PART 3: Providing IC Vectors for Notated Unordered PC Sets

Each notated collection below is an unordered pitch class set.

- First, give the normal order of each set.
- Then, provide the interval class vector for each set.

Unordered Set		Normal order	Interval Class Vector
1.			
2.	9: 0		
3.	9: 0 0 0 0		
4.			